Chapter 8
8.1

$$
\begin{aligned}
& H(X, y)=H_{u}+H_{v}+H_{n} \\
& H(X \mid Y)=H_{u} \\
& I(X, Y)=H_{v}
\end{aligned}
$$

8,2 Eg $x ;$ niture w the $x / y=b_{k}$ moe antrapic them In all coses

$$
\begin{aligned}
H(X \mid Y) & =\sum_{x y} p(x, y) \log \frac{1}{p(x \mid y)}=\sum p(y y) \log \frac{p(y)}{p(y x) p(x)} \\
& =M(X)+\sum_{x} p(x) \sum_{y} p(y(x) \log p(y) \\
& =H(x)-\sum_{x} p(x) D_{x L}(p(y(x) \| p(y))=H(x)=x(y) \text { if }
\end{aligned}
$$

8.3

$$
\begin{aligned}
H(x, y) & =\sum_{x y} P(x) P\left(y(x)\left[\log \frac{1}{p(x)}+\log \frac{1}{P \operatorname{Cy}(x)}\right]\right. \\
& =M(x)+H(Y(x)
\end{aligned}
$$

8.4

$$
\begin{aligned}
& I(x ; y):=H(x)-H(x \mid y) \\
& =\sum_{y} \sum_{x}\left[p(x, y) \log \frac{1}{p(x)}-p(x y) \quad \log \frac{1}{p(x y)}\right] \\
& =\sum_{i y} p(x y) \log \frac{p(x y)}{p x^{3} p(y)}=D_{R c}[p(x y) \| p(x) p(y)] \\
& \begin{array}{l}
\text { symm, } \\
\geqslant 0
\end{array}
\end{aligned}
$$

$8.5 D_{n}:=H(X, y)-I(x, y)=\sum_{x y} p(x, y) \log \frac{p(x) p(y)}{p(x y)^{2}}$

$$
=H(X \mid Y)+H Y Y X)=0
$$

sympm

$$
D_{H 1}(x, y)=0
$$

$$
\begin{aligned}
& =D_{H}(A, B) \\
& =D_{H}(B, C) \\
& =D_{H}(A, C)
\end{aligned}
$$

 8.7
a) $q=1 / 2 \Rightarrow P_{z}=(1 / 2 / / 2)$

$$
\rightarrow \quad I(x, z)=H(z)-M(z \mid X)
$$

b)

$$
\begin{aligned}
& P_{z}=[p q+(1-p)(-q), 0(1-q) p+(1-p) q] \leftarrow B S C \\
& M(z)-H(z \mid x)=H_{2}(p q+(1-p)(1-q))-H_{2}(q)
\end{aligned}
$$

8.8 For 3 cars:

$8.9 \quad w \rightarrow d \rightarrow r$
$P(w, d, r)=P(w) P(d \mid w) P(r \mid d)$

$$
\begin{aligned}
I(W ; D ; R) & =I(W ; D)+I(W ; R \mid D)^{0} \\
& =I(W ; R)+I(W ; D \mid R) \\
& \Rightarrow I(W ; R) \leq I(W ; D)
\end{aligned}
$$

8.10

3 cords
$2 / 3$ chance black

$$
\begin{array}{ll}
M(U)=1 & P(v / l) \cdot(l)=P(U, l): \\
H(L)=1 & 0 \\
& 1 / \sqrt{1 / 3} 1 / 61 / 3 \\
H(U / L)=H_{2}(1 / 3) \\
\Rightarrow I(U, L)=1-H_{2}(/ 3)=0.08 \text { bits }
\end{array}
$$

Chapter 9
9.1 $\quad P(x=0)=0.9 \quad P(x=1)=0.1$

$$
P(x=11 y=1)=\frac{0.85 \cdot 0.1}{0.15 \cdot 29+0.85 \cdot 0.1} \approx 0.39
$$

$$
9.2 \quad P(x=1 \mid y=0)=\frac{0.15 \cdot 0.1}{0.15 \cdot 0.1+0.85 \cdot 0.9} \approx 0.02
$$

9.3 E champed:

$$
\begin{aligned}
& P(x=1 \mid y=1)=\frac{0.85 \cdot 0.1}{0.85 \cdot 0.1+0}=1.0 \\
& 9.4 \quad P(x=1 \mid y=0)=\frac{0.15 \cdot 0.1}{0.15 \cdot 0.1+0.85 \cdot 0.9} \approx 0.016 \\
& 9.5 \quad B S C \quad F=0.15 \quad p(x=0)=0.9 \\
& I(X ; Y)=H(Y)-H(Y \mid X) \\
& H(Y \mid X)=\sum_{x} p(x) H(Y \mid x) \\
&=H_{2}(0.15) \\
& H(0.15) \\
& M(Y)=H_{2}(0.1 \cdot 0.85+0.9 \cdot 0.15) \\
&=H_{2}(0.22) \\
& \Rightarrow I= H_{1}(0.22)-H_{2}(0.15)
\end{aligned}
$$

$$
\begin{aligned}
& =2 \dddot{276}-0.61 \approx 0.15 \\
H_{2}(X) & =0.47
\end{aligned}
$$

$9.6 z$-chamel:

$$
\begin{aligned}
& H(Y)-H(Y I X) \\
= & H_{2}(0.1 \cdot 0.85)-[0.9-H(0)+0.1 H(0.15)] \\
= & 0.42-0.1-0.61=0.36
\end{aligned}
$$

9.7 for $p_{0}=p_{1}=1 / 2$

$$
\begin{aligned}
& H(Y)=H_{2}(1 / 2) \\
& H(Y \mid Y)=H_{2}(0.85) \\
& \rightarrow \quad H_{2}(0.5)-H_{2}(0.85)=0.39
\end{aligned}
$$

$9.8 \quad \mathrm{H}_{2}(0.5 \cdot 0.85)-0.5 \cdot \mathrm{H}_{2}(0.15)$

$$
0.98-0.3=0.674
$$

$9.9 \quad C\left(Q_{\text {eSC }}\right)=H_{2}\left((-\delta) p_{1}+F\left(1-p_{1}\right)\right)-H_{2}(F)$
aly p-lypundence
9.10 For poisy typeuniter, pick the unitorn

$$
\Rightarrow c=\log _{2} q
$$

9.ll z-chamel

$$
H_{2}\left(p_{1}(1-f)\right)-p_{1} H_{2}(f)
$$

not mosizized when $p_{1}=1 / 2$
9.12 Did this above
9.13 This tive $H(X)-M(X I Y)$

$$
\begin{aligned}
& \Rightarrow H_{2}\left(p_{1}\right)-F H_{2}\left(p_{1}\right) \\
& =(1-f) \mathcal{H}_{2}\left(p_{1}\right) \quad \text { opt at } p_{1}=1 / 2 \Rightarrow 1-F
\end{aligned}
$$

Take $x \in X^{N}$

* sp probable $y \simeq 2^{N H(Y)}$
$\simeq 2^{N H(Y \mid X)}$ probable seas given \pm
\Rightarrow * of ron-conturable inputs $\approx \frac{2^{N H(Y)}}{2^{N H}} N(Y \mid X)=2^{N I(X \cdot Y)}$
Let X maximize $I(X ; Y)$
\Rightarrow \# of ron-consuable inputs is 2^{NC}
$\Rightarrow C$ bits per N bits x
\Rightarrow Rate C
9.15 $\quad I(X: Y)=H_{2}\left(p_{1}(1-f)\right)-p_{1} H_{2}(f)$

$$
\begin{aligned}
\frac{\partial I}{\partial p_{1}} & =(1-F) \log _{2} \frac{1-p_{1}(1-F)}{p_{1}(1-F)}-H_{2}(F)=0 \\
& \Rightarrow p_{1}(1-F)=\frac{1}{1+2^{H_{2}(F)}(1--)} \quad \rightarrow p_{1}^{*}=\frac{1 / 1-f}{1+2^{1-f(F)(1-f)}}
\end{aligned}
$$

as $f \rightarrow 1 \quad p_{1}^{*} \rightarrow$ He by LHepial
When 1 is used, the z ' channel injects entropy
9.16

$$
9.17 \quad H(Y \mid X)=2 \quad \Rightarrow C=\log \frac{5}{2} b_{13}
$$

$$
\text { 9. } 18 \quad \alpha(y / x, a \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}(y-x)^{2}}
$$

$$
Q(x \mid y) \propto e^{-\frac{1}{2}(y F A)^{2}}
$$

$$
\begin{aligned}
& a(y)=\lg \frac{P(x=1)}{P(x=-1)}=-\frac{1}{2 \sigma^{2}}[-2 y \alpha-2 y \alpha] \\
& \\
& =\frac{2 y \alpha}{\sigma^{2}} \\
& \Rightarrow P(x=1 \mid y)=\frac{1}{1+e^{-2 y / \sigma^{2}}} \\
& P_{b}=\int_{-\infty}^{0} d y Q(y \mid x=1)=\int_{-\infty}^{-x a} d y \frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{1}{2} \cdot y^{2}}=P\left(-\frac{x a}{\sigma}\right)
\end{aligned}
$$

9.19 see explication

$$
H(12) \approx 220
$$

10% chance of dan 2 is $H=20$ 10% of messy w/ H ≈ 220
$\Rightarrow H(0.1)+2.1 \cdot 220+0.9 \cdot 20=40$
$9.20 \quad P($ distinct $)=\frac{A-(A-1) \cdots(A-S+1)}{A S}$
not $\rightarrow A=365 \Rightarrow S \sim 24$
$\#$ pairs $=\frac{S \cdot(5-1)}{2}$

* pairs. P (cheat pair shores L hay $)=\frac{S \cdot(s-1)}{2} \frac{1}{A}$

$$
\text { - } \mathbb{E} \text { (iv elisions) }
$$

small if Sard \sqrt{A}
big if $S>\sqrt{A}$

$$
\begin{aligned}
1(1-1 / 4) \cdots\left(1-\frac{S-1}{A}\right) & \approx \exp \left(-\frac{1}{A} \sum_{i=1}^{s-1} i\right) \\
& \approx \exp \left(-\frac{s(5-1)}{2 A}\right)
\end{aligned}
$$

9.21 Capacity is $H(X)-H(X I Y)$
rate is $\log _{2} 24 \sim 4.6$ bits
\Rightarrow below capacity $+6 \%$ chance sferror \approx
9.22 Select $q^{K} k$-tuples $\circ^{5} A^{k}$ alphabet

$$
\begin{aligned}
& 1-\left(\frac{A^{k}-1}{A^{k}}\right)^{q^{k-1}} \\
& q=364 \quad k=1 \Rightarrow 1-(1-1 / A)^{363}=0.63
\end{aligned}
$$

\Rightarrow likely failure
As $K \rightarrow \infty \quad$ though

$$
1-\left(\frac{A^{k}-1}{A^{k}}\right)^{q^{k-1}} \approx\left(\frac{q}{A}\right)^{k} \rightarrow 0 \text { fast }
$$

as $K \rightarrow \infty$ this becomes reliable.

Chapter 10
Noisy-Channel Coding

1. $C=\max _{P_{X}} I(X ; Y)$
has $t \in>0$ R-C for N large \exists cade dina R st. $P_{B}^{\text {max }}=\epsilon$
2. If bit error p_{b} is acceptable, can reach rites up to

$$
R\left(p_{b}\right)=\frac{c}{1-p_{2}\left(p_{b}\right)}
$$

3. Higher rates not possible
\underline{x} is typical in $P(x)$ if $\left|\frac{1}{N} \log \frac{1}{P(x)}-M(x)\right|<\beta$ similes for ψ in $P(y)$

$$
x \not y \text { in } P(x, k)
$$

xi jointly typical if above 3 lard "J.T."
$J_{M B}$ is set of all jointly typical $x \neq$
let $x, y \sim P(x, y)=\prod_{n=1}^{N} p\left(x_{n}, y_{n}\right)$

1. By LLN the probability that x, y are gorily typal $\rightarrow 1$ as $N \rightarrow \infty$
2. $\left|J_{N B}\right| \simeq 2^{N H(x Y)}$

$$
\left(J_{N \beta}\right) \leq 2^{N(N(x)+\beta)}
$$

3. For $x \sim P(x) \notin \sim P(y)$ indep

$$
\begin{aligned}
P\left((x, y) \in J_{N \beta}\right) & =\sum_{x \neq \in J_{N \beta}} P(x) P(y) \\
& \leq\left|J_{N \beta}\right| 2^{-N(H(H)-\beta)} 2^{-N(H(y) \beta)} \\
& \leq 2^{-N(I(x ; y)-3 \beta)}
\end{aligned}
$$

Mutual into is $\frac{1}{N} \operatorname{ls} \frac{1}{\rho}$ tot tho vendor typical sequences $x y$ are also giontly typical
Shannon's proof

1. Fix $P(x)$ \& generate $S=2^{1 R^{\prime}}$ codewords \mathcal{F} an $\left(N, N N^{\prime}\right)$ code at neman according to $\prod_{n=1}^{N} P\left(x_{n}\right)$
2. $P\left(y \mid x^{5}\right)=\prod_{n} P\left(y_{n} \mid x_{n}^{5}\right)$
3. Typical-set dealing (non optimal but pod enowen):
deuce y as \underline{x} if $\exists!\underline{x}$ s.t. $\underline{x}, \underline{y}$ are JT. else error 4. error if $\hat{s} \neq s$ errors

$$
\text { 1. } \quad P_{B}=P(\hat{s} \neq s / C)
$$

2. $\left\langle p_{B}\right\rangle=\sum_{C} P(\hat{s} \neq s / C) P(C) \quad \&$ average aver codes
3. $P_{s M}(c)=\max _{s} P(\hat{s} \neq s \mid s, c) \Leftarrow$ this is when t we are about fins focus here
a) By symmetry inc we can assume bLOG $s=1$ $\delta \geq$ probability that $x y \notin J_{N \beta} \rightarrow 0$ from betaine dove $\quad \delta \rightarrow 0$ as $N \rightarrow \infty$
b) $\quad P\left[\left(x^{\prime} y\right) \in J_{N /}\right.$ for $\left.x^{*} \neq x\right] \leq 2^{-N(I(x ; y)-3 \beta)}$

$$
\Rightarrow\left\langle p_{B}\right\rangle=\delta+2^{\mu R} \cdot 2^{\mu(x ; y)-3 \beta)}
$$

$\Rightarrow \quad\left\langle\beta B<2 \delta\right.$ as boy as $I(X ; Y)>R^{\prime}+3 \beta$
Choose $P(X)$ to maximize $I(x ; Y) \Rightarrow C>R^{\prime}+3 \beta$
c) Since $\left\langle p_{B}\right\rangle<2 \delta \quad \exists$ with $p_{B}(c)<2 \delta$

Four on that code. Now:
d) $F \in[0,1] \quad$ Marteovi
d) Far $P_{B}, \frac{1}{s} \sum_{s} p_{B}(s, C)-2 \delta \Rightarrow \mathbb{P}\left[p_{B}(s, C)>a\right] \leq \frac{E\left[p_{B}(s c)\right]}{a}=\frac{2 \delta}{a}$
\Rightarrow error of best half of caknads must all be $+4 \delta \quad a=46 \Rightarrow \frac{1}{2}$
\rightarrow Throw anal other half

$$
2^{N x^{\prime}-1} \text { words } \Rightarrow \text { rate } R=R^{\prime}-1 / N \quad R<C-3 \beta
$$

10.4 Communication above capacity (part 2 \&f theorem)

Take noiseless channel (or well-eneded $1<C$ noisy chowed)
\Rightarrow If we want a $C=1$ bit chonad at $P=2 \Rightarrow$ ipmare $1 / 2$ the bits
$\rightarrow 1-1 / R$ of tits missing \Rightarrow guess randomly quass randomly

$$
\begin{aligned}
\Rightarrow p_{b} & =\frac{1}{2}(1-1 / R) \\
& =1 / 4
\end{aligned}
$$

Senor)

Take (NK) code
put chunks of N bits in, tam to H bis \Rightarrow Exude" K bits here, "mending" $N \rightarrow K$ is just error correcting $\Rightarrow q N$ bits any from length N word then $K \rightarrow N$ differs by $-9 N$ bits fran original

$$
\begin{aligned}
\frac{K}{N} & =C(q) \Rightarrow \frac{N}{K}=1 / c(q) \Rightarrow p_{b}-q \\
C_{B C C}(q) & =1-H z(q) \Rightarrow \text { differs by } p_{0}=q \Rightarrow \frac{N}{K}=\frac{c}{1-1 k(q)} \Rightarrow \frac{c}{1-x_{2}(q)} \text { error rate for } B S C
\end{aligned}
$$

10.5 Non-acheivalle pant (Port 3 of Theorem)

$$
P(s, \underline{x}, y, \hat{s})=P(s) P(\underline{x} \mid s) P(\underline{y} \mid x) P(\hat{s}(y)
$$

Dada processing: $I(s ; \hat{s}) \leq I(x ; \psi) \leq N C \leftarrow$ defy of Chanel copocity Rate $R \& p_{\text {error }} \rightarrow$ Rate $R \quad \& \frac{b i t}{}$ error probability P_{b}
10.1 if errors on \hat{s} indep $I(s ; \hat{s})=M(\underline{s})-N(\underline{s} \mid \underline{s})=N R\left(1-H_{2}\left(p_{0}\right)\right)$

If there are complex correlations between bits then

$$
\text { Key ingot } \Rightarrow H(\hat{s} \mid s)<N R H_{2}\left(p_{b}\right) \Rightarrow I(s ; \hat{s}) \geq N R\left(1-d_{2}\left(p_{0}\right)\right)
$$

$$
\begin{aligned}
\Rightarrow & N R\left(1-d_{2}\left(p_{0}\right)\right) \leq I(\leq, s) \leq I(x, y) \leq N C \\
& \Rightarrow R \leq \frac{C}{1-d_{2}\left(p_{0}\right)} \Rightarrow \text { max acheivable } R \text { is } \frac{c}{1-H_{2}\left(p_{0}\right)}
\end{aligned}
$$

10.6 Computing Capacity
$10.2 \quad-\sum_{j, i} Q_{j l i} p_{i} \sum_{k} \sum_{k} \theta_{j k} p_{k}+\sum_{j i} Q_{j l i} p_{i} \lg Q_{j l i}$

$$
\begin{aligned}
& -\sum_{y} p(y) \operatorname{ly}(y) \quad M(y)-M(Y(X)=I(x, y) \\
& \frac{d}{d p_{i}}=\sum_{j}\left(-1-\log p_{j}^{y}\right) \frac{\partial \rho_{j}^{y}}{\partial \rho_{i}^{x}}+\sum_{j} a_{j l i} \log a_{j i i} \\
& =-\sum_{j}\left(1+\lg \sum_{k} \theta_{j k k} p_{k}\right) Q_{j / i}+\sum_{j} Q_{j h} \lg Q_{j / 1} \\
& 10.3 \\
& \Rightarrow \quad \frac{\partial^{2} T}{\partial p_{i} p_{j}}=-\sum_{l} \frac{Q_{l \mid j}}{\sum_{k} Q_{l \mid k} p_{k}} Q_{l l i}=-\sum_{l} \frac{\partial p_{k}}{\sum_{k} p_{k} p_{k}} Q_{l i j}<0 \\
& \frac{\partial I}{\partial p}=0 \Rightarrow \text { ylthal max }
\end{aligned}
$$

\Rightarrow Find $\frac{\partial I}{\partial \rho}=\lambda \quad \forall_{i} \quad \lambda$ is for $\sum_{i} p_{i}=1$ -mines bay ely

$$
\underset{1 \rightarrow 1}{0 \rightarrow 0} \underset{1 \rightarrow 0}{0} \Rightarrow P=\left\{\begin{array}{l}
1 / 2 \\
0 \\
1 / 2
\end{array}\right.
$$

$10.4 M(Y)-H(Y \mid X)$

$$
\begin{aligned}
& \text { (} 197) \mathrm{x}
\end{aligned}
$$

$$
\begin{aligned}
& p(y)=\sum p\left(y(x) p^{(x)}\right. \\
& \Rightarrow p(o)=1 \cdot\left(1-p_{I}\right) p_{x}+\frac{1}{2} p_{I} \\
& p(1)=1 \cdot\left(1-p_{I}\right)(1-p)+\frac{1}{2} p_{T}
\end{aligned}
$$

10.S KKT optimizer
10.6 From $*: \sum_{j} Q_{j l i} \log p_{j} j=\sum_{j} Q_{j 1 i} \log Q_{j / i}-\lambda-1$
unless $Q_{j} l i \Rightarrow$ Use all accessible outputs
$10,7 \quad p_{j}^{y}$ is linear in α_{j} / i
$H(Y)$ is concave in $p, y \Rightarrow$ concave in $\theta_{j ;}$
$M(Y \mid X)$ is also concave ix Q_{j} / j

$$
p_{t}(x, y)=p_{1}(x)\left(\lambda p_{1}\left(y(x)+(1-\lambda) p_{2}(y \mid x)\right)\right.
$$

$$
p(x) p(y)=p(x)\left(\lambda p_{1}(y)+(1-x) p_{2}(y)\right) \quad \Rightarrow \text { both } p(x y) \quad \text { pe }(x) p(y)
$$

$$
I\left(X_{\lambda} ; Y_{\lambda}\right) \leq \lambda I\left(X_{1} ; Y_{1}\right)+(1-\lambda) I\left(X_{2} ; Y_{2}\right) \in I \text { is jointly convex }
$$

Because $D_{\text {KL }}$ is jointly commex
$\Rightarrow I$ is convex in $\nabla_{j / i}$

$$
\begin{aligned}
D_{K L}(p l q) & =\frac{\mathbb{E}}{p} \log \frac{p}{q} \in \operatorname{con} w n i n q \\
& =\frac{\mathbb{E}}{q} \frac{p}{q} \log \frac{p}{q} \leftarrow \text { convex in } p
\end{aligned}
$$

10.8 Let $p_{1}(x) \quad p_{2}(x)$ be optional

$$
I\left(X_{\lambda} ; Y\right) \geq \lambda I\left(X_{1} ; Y\right)+(1-\lambda) I\left(X_{2} ; Y\right)
$$

b/ optimally
this is on equality

$$
p_{1}(y)=\sum_{i} Q_{j} \mid ; p_{1} ;(x)=d p_{1}(y)+(1-\lambda) p_{2}(y)
$$

10.8 Let $p_{1}(x) \quad p_{2}(x)$ both have $I\left(Y_{i} ; X_{j}\right)=C$

$$
\begin{gathered}
p_{i}(y)=\sum_{x} \underbrace{}_{\text {constr }} p_{1}(x) p_{i}(x) \\
I\left(d_{1}(x)+(1-\lambda) p_{2}(x) ; d p_{1}(y)+(1-\lambda) p_{2}(y)\right) \geq \lambda I_{1}+(1-\lambda) I_{2}
\end{gathered}
$$

\Rightarrow comer combination also has $I\left(1 p_{1}+(1-1) p_{2}\right)=C$ \Rightarrow above halos with equality
Now $I(X ; y)=H(Y)-H(Y \mid X)$

$$
\begin{aligned}
& H(Y \mid X)=\sum_{x} p(x) \sum_{y} \underbrace{}_{\text {canst }} p(y \mid x) \log p(y \mid x) \quad \text { Saline in } p(x) \\
& H\left(Y_{\lambda}\right)=\lambda H\left(Y_{1}\right)+(1-\lambda) H\left(Y_{2}\right) \Rightarrow p_{\lambda}(y) \text { is } \lambda \text {-indep } \Rightarrow p(y)=p_{2}(y)
\end{aligned}
$$

view this as $\mathbb{E} H\left(Y_{1}\right)$ where $Y_{1}-p_{1}(y)$
A discrete memonyless channel is symmetric ifs the aleuts can be partitioned into subsets sit.:

For each subset, the matrix Dyer
coach row is a perm. every other has catch row is a perm. every other \& likewise for columns

Eg 10.9

$$
\begin{array}{ll}
P(y=0 \mid x=0)=0.7 & P(y=0 \mid x=1)=0.1 \\
P(y=? \mid x=0)=0.2 & P(y=? 1 \mid x=1)=0.2 \\
P(y=1 \mid x=0)=0.1 & P(y=1 \mid x=1)=0.7
\end{array}
$$

Will later see that communication a capacity can be achaied over symmetric channels by linear codes
Ex 10.10 Assume partition hus only I den

$$
I(X ; Y)=M(Y)-M\left(Y(X) \text { © } \sum p_{x} M(Y x)=: M(r)\right.
$$

$$
\begin{aligned}
& =M(Y)-\underbrace{M(r)}_{p(r)-i n d e p} \\
& =H(\operatorname{Uni} f(y))-M(r)
\end{aligned}
$$

Note $V_{n i f} \Rightarrow$ Unify because rows are perms of each other
\Rightarrow For single partition, Uni F_{x} is en optimum
For multiple partitions $p(x)=\operatorname{Unif}(x) \Rightarrow p(y)=\operatorname{Vnif(})$ still
Fix $x, x^{\prime} \quad p(y \mid x)$ is still a permutation of $p\left(y \mid x^{\prime}\right)$

$$
\begin{aligned}
& \quad \Rightarrow H(y \mid x)=\sum_{x} p(x) H(y \mid x)=M\left(y\left(x_{0}\right)=: M(r)\right. \\
& \Rightarrow I(x ; y) \leq M\left(u_{n} f(y)\right)-M(r)
\end{aligned}
$$

with equality for $p(x)=\operatorname{In} F(x)$
Ex 10.11 For choond we have I. $J-1$) d.O.F for $p(x)$ we have just I-1
In the $I(J-1)$-dim space of perturbations abut symmetric chant expect a dimension $I \cdot(J-1)-I-1=I J-2 I-1$ that leave $p^{\text {tit }}$ the same but break symmetry

$$
\text { example: }\left(\begin{array}{cccc}
0.9585 & 0.0915 & 0.35 & \\
0.0415 & 0.9585 & & 0.35 \\
& & 0.65 & 0.65
\end{array}\right)
$$

10.7 Reliable communication $w /$ error $\in \&$ rate R at susticiently longe N
Closer $R \rightarrow C$ \& smaller \in is \Rightarrow larger N

$$
E_{r}(R) \rightarrow 0 \text { as } P \rightarrow C
$$

Eur for BSC there is so andyitic form for E_{r}
Lower bound es:

$$
P_{B} \geq \exp \left[-N E_{s p}(R)\right]
$$

$$
\begin{aligned}
& \text { It pore } \\
& \text { paling } \\
& \text { exponent }
\end{aligned}
$$

Ex 10.12

$$
\begin{aligned}
& \text { Lat } p(x=0)=p \Rightarrow p(y \mid x=0)=(1-q, q, 0) \Rightarrow H(Y \mid x)=H_{2}(q) \\
& P(y / x=1)=(0, q, 1-q) \Rightarrow \text { pub } \\
& P(y)=[(1-q) p, q p+q(1-p),(1-q)(1-p)] \\
& =[(1-q) p, q,(1-q)(1-p)] \\
& \Rightarrow H(Y)=-(1-q) p \log (1-q) p-q \log q-(1-q)(1-p) \log (1-)(1-p) \\
& \begin{array}{ll}
y=-x \log x \\
y^{2}=-1-\log x
\end{array} \quad \partial_{p} H(Y)=0 \Rightarrow p=1 / 2 \\
& T^{\prime \prime}=1-\log x \\
& \Rightarrow M(y)=-(1-q) \log (1-q) / 2-q \log q \\
& \Rightarrow C=H(Y)-M(Y I X)=1-q
\end{aligned}
$$

Z channel: Evade second bit as first bit Japed
Either both bits are sent concetly "prob la or the lit corded wa 1 Slips with prob q

$$
\begin{aligned}
& \frac{1}{2} 01 \vec{\imath}_{0} 01(-4) / 2 \\
& 1 / 210 \underset{\sim}{\infty} 10 \begin{array}{cc}
4 \\
1 & (1-q) / 2
\end{array} \Rightarrow B E C w q
\end{aligned}
$$

Ex 10.13 Take a set of C connections of N wires Information contest $D 5$ a partition is $\log \Omega$

$$
\begin{aligned}
& \Omega=\frac{N!}{\prod_{r} g_{r}!(r!)^{g r} \quad g_{r} \text { subsets of size } r} \\
& \frac{\partial}{\partial g_{r}}\left[\log \Omega+d \sum r g_{r}\right]=-\log r!-\log g_{r}+\lambda r \\
& \Rightarrow g_{r}=\frac{e^{\lambda r}}{r!} \Rightarrow \text { optimal is poisson! } \\
& \sum g_{r} r=\mu e^{\mu}=N \quad \mu=e^{\lambda}
\end{aligned}
$$

Chapter II: Real Channels

$$
P(y \mid x)=N\left(y \mid x, \sigma^{2}\right)
$$

discrete in time \Rightarrow AGWN chomel

$$
\begin{array}{r}
y(t)=x(t)+y(t) \\
\eta \sim N\left(0, \sigma^{2}\right)
\end{array}
$$

Power cost: $=\frac{1}{T} \int_{a}^{T} d t[x(t)]^{2} \leq P$
Transmit N numbers using N basis functions

$$
\begin{aligned}
& x(t)=\sum_{n=1}^{N} x_{n} P_{n}(t) \\
& y_{n}=\int_{0}^{T} d t g_{n}(t) y(t)=x_{n}+\int_{0}^{T} d t P_{n}(t) n(t) \\
&=x_{n}+x_{n} \quad n_{n} \sim N(0, N / 2) \\
& \text { power }<P \Rightarrow \bar{x}_{n}^{2}<\frac{P T}{N}
\end{aligned}
$$

Pandwidth: $W=\frac{N^{\text {max }}}{2 T}$

$$
\Rightarrow N^{m 0 x}=2 W T
$$

By Myquist sampling tharem if higheot freq is W then a signd con be uniquely recovened by sompling

$$
\text { at } \Delta t=\frac{1}{2 W} \text { intervals }
$$

$\Rightarrow 2 \mathrm{~W}$ uses / seend

If we uant to tramsmit binary x_{n}
have an onoding giving us rate
power/sounce bit $E_{b}=\overline{x_{n}^{2}} / R \quad$ vs roise spectral dunity

$$
\frac{E_{p}}{N_{0}}=\frac{x_{n}^{2}}{2 \sigma^{2} R}
$$

11.2 Inferring the input

$$
\begin{gathered}
P(n)=N\left(0, A^{-1}\right) \\
\Rightarrow P(y / s)=N\left(s, A^{-1}\right) \quad \text { resp. enceddings } \\
\frac{P(s=1 \mid y)}{P(s=0 / y)}=\frac{P(y / s=1) P(s=1)}{P(y / s=0)}=\exp \left[y^{\top} A\left(x_{1}-x_{0}\right)-\frac{1}{2} x_{1}^{\top} A x_{1}+\frac{1}{2} x_{0}^{\top} A x_{0}+\log \frac{P(s=1)}{P(s=0)}\right] \\
a(y)=y^{\top} A\left(x_{1}-x_{0}\right)+\theta=w^{\top} y+\theta \\
a>0 \Rightarrow s=1 \\
\alpha<0 \Rightarrow s=0
\end{gathered}
$$

11.3 Capacity of a Eaussion Chonnel

Ex $11.1 \quad I(X ; Y)=M(Y)-H(Y / X)$

$$
\max _{p(t)} I(X ; Y) \quad \text { s.t. } \quad \overline{x^{2}}=v
$$

$$
\begin{aligned}
& \int d x P(x)\left[\int d y P(y \mid x) \log \frac{P(y(x)}{P(y)}-\lambda x^{2}-\mu\right] \\
& \Rightarrow \frac{\delta}{\delta P(x)}= \int d y P(y \mid x) \log \frac{P(y(x)}{P(y)}-\lambda x^{2}-\mu \\
&\left.-\int d x^{\prime} P\left(x^{\prime}\right) \int d y \frac{P(y / x)}{P(y)} \frac{S P(y)}{S P(x)}\right\} P(y / x) \\
& \int d x^{\prime} d y \operatorname{p(x)} \frac{p\left(x^{\prime} y\right)}{P(y) p(x)} \frac{p(x, y)}{P(x)}=1 \\
& \Rightarrow \forall x: \int d y P(y / x) \log P(y)=-\lambda x^{2}-\mu-
\end{aligned}
$$

$P(y \mid x)$ is gaussian $w /$ mean $x \quad \Rightarrow \log P(y)$ be gust in y
$\Rightarrow P(y)$ is gaussian
Can obtain this using greussion x
Ex 11.2

$$
\begin{aligned}
I 1.2 & =\int d x d y P(x) P(y \mid x) \log P(y \mid x)-\int P(y) \log P(y) \\
& =\frac{1}{2} \log \frac{1}{\sigma^{2}}-\frac{1}{2} \log \frac{1}{v^{2}+\sigma^{2}} \\
& =\frac{1}{2} \log \left(1+\frac{v}{\sigma^{2}}\right)
\end{aligned}
$$

Geometric vier of notsy-chomel coding theorem:

$$
x=\left(x_{1} \cdots x_{N}\right)
$$

Noise power is very close (For large N) to NJ^{2} $\Rightarrow \nsucceq$ is close to lying on the surface of a sphere at x of radius $\sqrt{10^{2}}$

If x is gererded under $\overline{x^{2}}=v$
$\Rightarrow x$ is close to the surface of a splore at O of rufus $\sqrt{N_{V}}$ $\Rightarrow y$ is at $\sqrt{N\left(v+\sigma^{2}\right)}$

$$
\begin{aligned}
& M_{s}(r, N)=\frac{\pi^{N / 2} r^{N}}{\Gamma(N / 2+1)} \\
& \frac{\operatorname{Vd}\left(S_{y}\right)}{\operatorname{Vol}\left(S_{y} / x\right)} \Rightarrow\left[\frac{v+\sigma^{2}}{\sigma^{2}}\right]^{N / 2}=[1+S N R]^{N / 2} \\
& \Rightarrow C \simeq \frac{1}{2} \log [1+S N R)
\end{aligned}
$$

$N / T=2 W$ uses per second

$$
\begin{aligned}
& \Rightarrow C \cdot \frac{N}{T}=W \log (1+S N R) \quad \sigma^{2}=N_{0} / 2 \\
&=W \log \left(1+\frac{P}{W N_{0}}\right) \quad V=\overline{x^{2}}=P \\
& W_{0}:=P / N_{0} \Rightarrow \frac{C}{W_{0}}=\frac{W}{W_{0}} \log \left(1+\frac{W_{0}}{W}\right) \\
& C \rightarrow W_{0} \log e \text { as } \frac{W}{W_{0}} \rightarrow \infty
\end{aligned}
$$

Better to have low SMR large W than high SNR small W
$P N_{0}$ Fired $\Rightarrow W_{0}$ Fixed

$$
\text { "Wideband communication" } \rightarrow 3 E
$$

But for social reasons need narrower bands

Concatenation:

$$
C \rightarrow Q \rightarrow D
$$

êc chumel decuder
super-chanmel Q^{\prime}
$C^{\prime} \rightarrow Q^{\prime} \rightarrow D^{\prime} \Rightarrow$ Concatiented cale
Interleaning: Read in blocks of angth $>$ longth of C, C^{\prime}
enedte data one way using C reorder bits \rightarrow enorde andther may using C^{\prime}

Ex 11.3 Finish
$11.4 \quad c=1-$ H(xoise) $=1-0.207 \approx 0.793$

$$
\frac{A_{2}(b)+N b}{N_{2} d b s e^{5}}
$$

Interlewing leads to a bSc w/ $F \sim 0.2 \times 0.5$ iid $=0.1$

$$
\Rightarrow C=0.53
$$

11.5 a) $c=\frac{1}{2} \log \left(1+\frac{v}{\sigma^{2}}\right)$
b) C is masimized for $\pm v$ equiprobuble

$$
C=-\int P(y) \log P(y)-\int N(y ; 0) \lg N(y ; 0)
$$

annoying - becomes close to
c) Becomes BSC

$$
C=1-\mathcal{L}_{2}(F) \quad F=\Phi(\sqrt{v} / \sigma)
$$

